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Abstract  
 
Memory is usually associated with higher organisms rather than bacteria.  However, evidence is mounting that many 
regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to 
memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories 
may respond differently to current conditions. These “memory” effects may be more than incidental to the regulatory 
mechanisms controlling acclimation or to the status of the metabolic stores.  Rather, they may be regulated by the cell and 
confer fitness to the organism in the evolutionary game it participates in.  Here, we propose that history-dependent behavior 
is a potentially important manifestation of memory, worth classifying and quantifying.  To this end, we develop an 
information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount 
of information about the past encoded in history-dependent dynamics.  This method produces a phenomenological measure 
of cellular memory without regard to the specific cellular mechanisms encoding it.  We then apply this framework to a 
strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and 
estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application of a 
common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, 
and that this memory is distributed differently among the observables. While this study does not examine the mechanistic 
bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for 
studying new questions about cellular regulation and evolutionary strategy. 
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Introduction  
 
Your average bacterium is unlikely to recite π to 15 places or compose a symphony.  Yet evidence is mounting 
that these ‘simple’ cells contain complex control circuitry capable of generating multi-stable behaviors and other 
complex dynamics that have been conceptually linked to memory in other systems.  And though few would call 
this phenomenon memory in the ‘human’ sense, it has long been known that bacterial cells that have 
experienced different environmental histories may respond differently to current conditions [1-3].  Though some 
of these history-dependent behavioral differences may be physically necessary consequences of the prior 
history, and thus some might argue insignificant, other behavioral differences may be controllable and therefore 
selectable and even fitness enhancing manifestations of memory.   
 
In this paper we take the potentially controversial view that history-dependent behavior, whether short or long 
term, controlled or incidental, reflects a form of memory [4-6].  Because bacterial dynamics at every level of 
resolution operate within the limitations and potentials of nonlinear physical and biochemical dynamical 
systems, they must exhibit at least very short-term transient memory, and potentially longer term memory. The 
type of memory (and its significance) depends on which features of cell history are ‘remembered’, and at what 
resolution; whether or not the system eventually ‘forgets’ its past, and if so, how long this forgetting takes; the 
mechanisms in the cell responsible for memory storage, encoding, and retrieval; and whether or not this memory 
provides a fitness advantage in a natural environment.  In cellular systems, environmental memory has been 
noted to be inherent in everything from the selective history of mutation, epigenetic inheritance via chromatin 
modification in neurons and DNA methylation in chemotaxing bacteria [7], genetic and epigenetic phase 
variation mechanisms controlling surface features of pathogenic bacteria [8,9], cellular proliferation and survival 
in the immune system, and in switch-like feedback systems in regulatory networks spanning signal transduction, 
metabolism and gene expression [10-21].  There is also a growing body of work focusing on synthetically 
designing and constructing network motifs and systems that are capable of showing some types of dynamic 
memory [22,23].  These and many other studies in synthetic and natural systems suggest that even the simplest 
first-order chemical reactions have at least transient memory of initial conditions, and more complex 
mechanisms involving history-dependent changes in the concentrations, states and localization of proteins and 
other regulatory network elements can encode a wide range of input information and store it for amounts of time 
ranging from minutes to days or longer [4,16,24,25].   The state dynamics of such systems contain the memory 
of past controlling inputs, and even of past environmental conditions if one is to interpret more broadly [5,26].  
 
In metazoans, the ability of somatic cells to remember their fates is key to development and thus to organismal 
fitness.  The same can be said for other types of metazoan cells like those found in the immune system that use a 
memory of past states to modify future behavior.  In principle at least, memory, whether short- or long-term, can 
feasibly confer an evolutionary advantage in microbes as well.  For instance, Hoffer et. al. suggest that in E. coli 
a form of ‘memory’ of past phosphate limitation leads to a faster response to successive periods of phosphate 
limitation, and that this faster response may be survival enhancing [5].  It has also been suggested that 
pathogenic bacteria use cross-talk encoded memory to balance the demands of immune avoidance with a 
sequential, compartment to compartment infection lifecycle [8,9]. More abstractly, the dynamic implementation 
of cellular behaviors can be viewed as a selected, ‘winning’ (or at least stable) strategy in an evolutionary game 
[12,27]. In game theory, information creates advantage [28-30], and information about the past as well as the 
present creates even greater advantage.  Thus if bacterial cells are able to store information about past 
experience in some type of memory, and use this memory to modulate their behavior, this opens up the 
possibility of playing game strategies with memory, a provably superior family of strategies compared to those 
without memory [31-35]. Even if the memory capacity of the system is short term, but on the order of 
environmental fluctuations, it could conceivably impact fitness and therefore play a role in an evolved adaptive 
behaviour [28]. 
 
Given the potential ubiquity and significance of bacterial memory, we propose that quantifying history 
dependent behavior in microbes could be an important piece of the puzzle of bacterial regulation, survival 
strategy, and evolution.  To this end, we developed an information-theory based conceptual framework for 
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thinking about and measuring both the persistence of memory in microbes and the amount of information about 
the past encoded in these dynamics. This method produces a phenomenological measure of cellular memory 
without regard to the specific cellular mechanisms encoding it.  We then applied this framework to the 
bacterium B. subtilis.  B. subtilis presents an excellent model organism for this study because of its exquisite 
sensitivity to environmental conditions, its known mechanisms of bistability and other hysteretic switch-like 
regulatory stress response mechanisms and architectures, and its developmental decision to sporulate that 
strongly resembles eukaryotic memory-associated processes determining developmental cell fate ([10,36-40], 
Fig. 1). Also, certain aspects of B. subtilis behavior, such as spore coat composition, have already been 
associated with environmental memory [41-43], and though much suggests that there should be memory, how 
these response dynamics depend on past conditions prior to application of a stress has not been systematically 
examined. 
 
In our experiments, we quantified the ability of three B. subtilis stress response systems – sporulation, 
degradative enzyme synthesis, and growth - to ‘remember’ 10 distinct cell histories prior to application of a 
common stressor. We chose to observe commitment to sporulation (via reporter fusion to PSPOIIE) because the 
sporulation decision is bistable, and bistability is associated with memory [9,11,16,44].    We added the reporter 
for degradative enzyme synthesis (measured by a fluorescent reporter fused to the AprE promoter) because 
though it shares many common controllers with sporulation, its expression pattern is quite different and not 
believed to be bistable or probabilistic.  We wondered whether any history-dependence in sporulation control 
would be mirrored in AprE control.  Finally, we chose to observe growth (as measured by OD600) because it is 
perhaps the most accessible measure of cellular health and fitness and is an integrator of many other aspects of 
cell function, thus it may show interesting differences depending on cell history.   One can imagine that there 
might be a strong fitness incentive toward memory in B. subtilis.  If cells could use a memory of past conditions 
to ‘predict’ future conditions, and delay sporulation, an expensive process, if the environment is likely to 
improve or accelerate sporulation if the starvation period is likely to be long, they might improve their odds for 
long-term survival. 
 
 

Results  
 

Information Theoretic Memory Framework 
 

‘Adaptive’ memory experiment  
 
A complete quantification of biologically relevant memory would involve first perturbing the cell with all 
possible sequences of complex environmental inputs it might experience in the wild in each of its growth modes, 
then measuring all cellular responses to these perturbations, and, finally, quantifying the degree and distribution 
of history-dependence in these responses.   
 
Here we assume a simple approximation of this scenario, in which each sample of a biological system is 
subjected to one of many conditions prior to time t0, and then observed in a common condition after t0 (see Fig. 
2 and Definition (1) in Appendix S1 in Supplementary Information).  We call this an ‘adaptive’ memory 
experiment because it roughly simulates a temporal shift in the environment requiring adaptation or acclimation, 
and to differentiate it from the more classical memory experiments in physics, engineering and cell biology 
designed to identify hysteretic loops [45-47]. While we do not identify such loops here, multistability is 
suggested by the appearance of long term memory in our experiments. More complex environmental history 
trajectories could feasibly unravel more memory effects. 
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We are interested in whether past conditions can be inferred from observations of behavior in current conditions. 
The assumption here is that history-dependent behavior is a manifestation of memory, and that the better the 
possible inference about prior conditions from current measurements, the more memory there is within the 
system. 
 

Adapting communication metrics to memory   
 
To quantify this intuitive concept of history-dependence as memory, we use concepts from information theory 
[48] in the tradition of Landauer’s use of informational entropy to estimate human memory capacity [49], and 
the extensive body of work characterizing memory in individual neurons [50-53]. 
 
By interpreting the random variable Y as behavior in current conditions, and the random variable M as past 
cellular history prior to time t0, the mutual information )|()();( YMHMHYMI −=  of M relative to Y 
provides a measure of memory in informational entropy bits (see [48], Fig. 3, and Definition (2) in Appendix S1 
for details, including the definition of informational entropy H).  Roughly speaking, from this perspective 
I(M;Y) captures how much uncertainty about past conditions can be reduced by observations of behavior in 
current conditions.  Worded differently, I(M;Y) captures how much information about past conditions can be 
inferred from observations of behavior in current conditions.  The better the possible inference about prior 
conditions (and thus the higher the bit count of I(M;Y)), the more memory there is within the system.       
 

Short term vs. long term memory 
 
Memory, or history-dependent behavior, can manifest across multiple time scales.  Short term, or transient, 
memory is stored by the system for some time, and then ‘forgotten’ (see Fig. 4a,d).  Systems may also have 
either ‘effective’ long term memory if the transient dynamics are long compared to environmental fluctuations, 
or ‘true’ asymptotic memory if the stationary state of the system depends on initial conditions, as occurs in 
nonlinear systems with multiple attractors (see Figs. 4b,c,and e).  For an example of the latter, the state of a 
bistable switch encodes an asymptotic memory of the last switching event.   
 
Because in many systems the significance, mechanistic origin, and function of memory likely depends on how 
long it lasts, and in particular whether it can be classified as short-term or long-term, we distinguish between the 
two types of memory and quantify them separately.   From an information perspective, we say that an external 
observer of an adaptive memory experiment with a priori knowledge of the probability distribution over cell 
histories detects short-term memory in this system if observing measurements of some fraction of the short-term 
behaviour of the system after time t0 leads to a reduction in uncertainty about the history of the system prior to 
time t0.  In this case, we say that the cells exhibit Itrans(M;Y; ttrans)≡  I(M;Y(t = t0:t0+ ttrans)) bits of short term 
memory in the observable Y over the period from t0 to t0+trans, where ttrans is a time before the signal 
approaches its steady state (Definition (3) in Appendix S1). Likewise, long-term memory is detected if 
observing measurements of the system behavior near an apparent steady state after time t0 leads to a reduction 
in uncertainty about the history of the system.  Here we say the cells exhibit Iasym(M;Y)≡  I(M;Y(t=t0+tasym:∞)) 
bits of long term memory in the observable response Y during the experiment, where tasym is the time it takes for 
the signal to settle (Definition (4) in Appendix S1).  
 

Memory quantification normalized 
 
The above metrics for short term and long term memory are absolute measures, in that they give a bit count for 
an answer.  Though these absolute numbers can be useful, it is also useful to measure memory in relative terms, 
compared to the total amount of memory that could be observed in a perfectly retentive system given the 
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limitations of the experiments.  To address this issue, we define short-term memory fidelity to be Ptrans(M; Y; 
ttrans)≡  I(M;Y(t = t0:t0+ttrans))/H(M) and long-term memory fidelity to be Pasym(M;Y)≡  I(M;Y(t = t0+ tasym 

:∞))/H(M), where H(M) is the entropy over all the past conditions that were applied in the experiment. These 
normalized mutual information metrics, measures between 0 and 1 of the fraction of uncertainty about the past 
conditions tested that is reduced by knowledge of future cellular response, have also been called the coefficients 
of constraint [54] (see Definition (5) in Appendix S1). 
 

Quantifying memory in higher dimensions 
 
In addition to analyzing each observable individually, we are interested in calculating the short and long term 
memory exhibited by the combined behavior of multiple observables.  To do so, the above definitions are easily 

extended to the case of multiple observables by letting Y be a vector ),..,( 1 nYYY =  and calculating 

Iasym(M;(Y1,..,Yn)) and Itrans(M;(Y1,..,Yn); ttrans) and the memory fidelity of each. This combined-memory 
estimation is interesting because it allows one to address the question of whether combining information from 
multiple read-outs leads to extra memory beyond what is present in any of the individual read-outs, and if so, 
how much.  This issue is related to the size of the memory, and the dimension it occupies within a cell’s state 
space.   
 
An inequality governing the informational entropy of a vector pair of variables (X,Y) is as follows: 

)()(),())(),(max( YHXHYXHYHXH +≤≤  [54].  Thus, we know that the memory exhibited by any pair 
of observables must be greater or equal to the bit count of the most retentive pathway of the pair, and less than 
or equal to the sum of the bit counts of the two pathways. If two pathways are controlled independently, their 
combined behavior could produce the upper limit on memory in the higher-dimensional space, whereas if the 
pathways are controlled by a common signal or if one pathway hierarchically controls the other, the lower limit 
might be realized.  To quantify this concept, we define memory orthogonality between two pathway readouts Y1 
and Y2 to be: Memorth(M;(Y1,Y2)) ≡ (I(M;(Y1,Y2))-max(I(M;Y1),I(M;Y2)))/min(I(M;Y1),I(M;Y2)), where M is 
cell history and I is mutual information.  Memorth equals 1 if the two variables combined as a vector yield the 
upper bound of memory, and 0 if the two variables in combination yield the lower bound (see Definition (6) in 
Appendix S1).  
 

Implementation 
 
For the calculations above, listed more formally in Appendix S1 in Supplemental Information, we need to 
estimate probability distributions over the past cell histories being tested and the responses of the cells to each 
history.  For past conditions/histories, we enforce a uniform probability of observation of each condition by 
running each experiment (condition i => response i) a fixed number of times.   For responses, we cluster 
trajectories from the different conditions and the probability of a response is simply the histogram of trajectories 
over clusters.  The probability of prior environment given cluster membership is enumerated in a similar way.  
Details of the entire analysis algorithm can be found in Materials and Methods.   
 

Caveats 
 
The above information-based metrics and simple associated analysis algorithm (see Materials and Methods) are 
useful in that they transform the ‘lay’ questions – “Do cells ‘remember’ past experiences and use these 
memories to modify future stress response dynamics?” and “If so, is this ‘memory’ short term or long term, and 
how much is there?” – into well-defined queries about information and uncertainty yielding quantitative 
estimates of microbial memory in informational entropy bits.   
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However, any attempt to quantify or qualify memory is fundamentally limited by the possibility of unobservable 
states (see Fig. 4c), uncontrolled and unobservable inputs, poor choice of input combinations and sequences, and 
measurement errors and distortions. Here we assume most such limitations, discussed in more detail in 
Supplementary Information (Section S1), are inherent in the estimation of memory processes and most likely to 
result in information loss and thus underestimates of the ability of the system to ‘remember’ the cell histories 
tested by the experimental compendium.   Therefore we interpret quantifications of memory within our B. 
subtilis compendium as lower bound estimates.  
 
 

Experiment and Overview of Analysis 
 
Memory experiment on B. subtilis: To test for history dependent behavior – ‘memory’ - in B. 
subtilis, we engineered a fluorescently labeled strain of Bacillus subtilis to report on commitment to sporulation 
and degradative enzyme synthesis: the KEE strain (PspoIIE-gfp, PaprE-dsred cmp, see Materials and Methods 
for details on strain construction). The spoIIE promoter (PspoIIE), our sporulation reporter, controls expression 
of spoIIE, a gene encoding a serine phosphatase specifically expressed upon commitment to sporulation and 
therefore considered a good sporulation commitment signal [55,56]. The aprE promoter (PaprE), our 
degradative enzyme synthesis reporter, controls expression of the extracellular protease subtilisin naturally 
produced by B. subtilis cells at the end of exponential growth [57]. 
 
With the KEE reporter strain, we used our framework to estimate, in informational entropy bits, the capacity of 
these stress response pathways and of the cell growth dynamics to ‘remember’ 10 distinct cell histories prior to 
application of a common stressor.  Specifically, we first grew three replicate cultures in one of two media, Luria 
Broth medium (LB) or growth medium (GM) [58], to one of five different densities (all still in exponential 
growth, ranging from OD600 = [0.1:1], see Table 1, where OD600 is the optical density of the culture at 600nM), 
for a total of ten cell histories.  Thus in the first stage of the experiment, a clonal population of cells was divided 
into 30 groups, each of which experienced one of the 10 cell histories consisting of growth in one of two media 
to one of five cell densities over a fixed period of time (see Materials and Methods for details).  
 
We chose to combine different media with growth to different densities as our set of cell histories because 
growth media can impact cell state, as can growth of cultures to different densities over a fixed period of time. 
Cells deplete nutrients and respond to the environment and its dynamics with changes in metabolic fluxes, post-
translational modifications, gene expression, quorum signaling and synthesis of storage compounds. GM 
medium (also called CH medium) is a rich medium with casein hydrolysate as the sole carbon source [58].  LB 
medium is a much richer and more complex medium than GM and therefore sustains more rapid growth.   We 
assumed that any resulting history-dependent differences in cell state at time t0 might lead to different history-
dependent behaviors in the common medium after t0. 
 
After experiencing one of the 10 different cell histories, cells were then pelleted and resuspended at an 
intermediate density (OD600=0.5) in a common stress medium, in this case, sporulation salts starvation medium 
(SM) [58].  The resuspension time is denoted t0.  Thus, regardless of past experiences, all cells observed after t0 
were subjected to starvation conditions starting at t0 in a fixed-density, fixed-size population.   
 
Our three observables Y after t0 consisted of two fluorescent reporters, one for sporulation initiation and another 
for degradative enzyme synthesis (strain KEE (PspoIIE-gfp, PaprE-dsred cmp)), and optical density of the 
culture as a proxy for cell growth (OD600), measured at the bulk population level every 15 minutes for 24 hours 
starting at time t0 (see Fig. 4 for time series, and Materials and Methods for details on strain construction and 
experiments). Thus, with 30 cultures – three for each of the 10 cell histories – and three observables per culture 
measured every 15 minutes for 24 hours in the common stress medium starting at t0, the memory data 
compendium for this set of experiments consists of 30x3x96=8,640 measurements arranged in a 90 by 96 
matrix. 
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Data analysis overview: The resulting memory data compendium was then analyzed for short- and 
long-term memory in each output signal individually and in all possible combinations of the three signals by 
applying the memory quantification algorithm described in detail in Materials and Methods and illustrated in the 
flow chart in Supplementary Information Section S2.   
 
To briefly summarize, in order to estimate how much short-term and long-term memory was manifested in the 
behavior of the reporters, we sought to calculate the mutual information between the behavior of the cells after 
t0 and the history of the cells before t0.  This calculation required that we estimate the joint probability density 
between cellular behavior after t0 and cell history prior to t0.  Given constraints on the amount of data and other 
considerations described in detail in Section S3 of Supplementary Information, we took a clustering approach to 
this problem. That is, we first clustered the response of the pathway reporter as a way of dividing the trajectories 
into groups with common, distinct behaviors. The resulting assignment of each trajectory to a cluster was then 
used to calculate the frequency of co-occurrence of each behavioral class and each possible cell history. From 
this histogram we estimated the requisite joint probability distribution, which was then used to calculate the 
mutual information between cell history and the behavior of the observable, and thus arrive at an estimate for 
memory.     
 
We performed this procedure on the 30 trajectories (3 replicates for each of the 10 cell histories tested) of each 
of the three observables, using both the short term (first 11 hours of measurements, during which the signal was 
still dynamically varying - see Materials and Methods for more details on our choice of analysis intervals) and 
long-term response (last three hours of measurements, from 21 to 24 hours, by which time the signals have 
remained flat for several hours) in order to estimate short-term and long-term memories manifested in each 
individual signal.  To calculate the short-term and long-term memory in the combined activities of multiple 
signals, we took the same approach, with the one difference being that the clustering step captured the combined 
behavior of multiple readouts (Step 3 in the algorithm in Materials and Methods).  All bit counts were then 
normalized to calculate memory fidelities and orthogonalities, as defined in Appendix S1, in order to estimate in 
relative terms how much of the total possible memory each system ‘remembers’, and how much ‘extra’ memory 
is embedded in the higher-dimensional spaces formed by multiple pathways.  
 
Since the 30 populations were subjected to 10 different (within error) past conditions M=(Medium1, Density1) 
in equal proportions, the informational entropy of the cell history space M is H(M) 3219.3)10/1(log2 =−=  
bits.  Thus, without prior knowledge there are 3.3219 bits of information about cell history at most that can be 
recovered from observation of these three outputs, either individually or in combination and on any time scale.    
 
 

Experimental Results 
 

A qualitative overview of history-dependence   
 
The B. subtilis stress responses measured by the three observables (Figure 5) appear neither memoryless nor in 
possession of a perfect memory of the cell histories tested.  They do not appear to be memoryless because not all 
signals from a given observable follow a common trajectory (within noise bounds) irrespective of past history of 
the cells.  Nor does the memory of any observable appear to be perfect, because though there are ten distinct cell 
histories prior to time t0, there appear to be fewer than ten distinct dynamics per observable in response to the 
starvation stressor administered at time t0.   By eye, there appear to be more distinct behaviors in the short term 
than in the long term.  Also, different cell histories group together for different observables. This means that we 
expect a higher bit count estimate of short term memory than long term memory, and different amounts of 
memory and of different aspects of cell history in the three pathway observables.  
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All observables exhibit short-term memory of cell h istory, with sporulation 
exhibiting the most and growth dynamics the least    
 
The transient behavior (first 11 hours) of the SpoIIE (sporulation) reporter clusters into five distinct classes of 
behavior (different onset times and sigmoidal vs. more pulsatile expression), whereas the transient behavior of 
the AprE (degradative enzyme synthesis) reporter clusters into three classes (different onset times and different 
expression levels) and the growth reporter into just two classes (some vs. almost no growth) (see left panels of 
Fig. 6a,b,c).  The mutual information between the resulting clustering vectors and the cell history vector 
captures how well the different behavioral classes of each observable correspond to different cell histories.   
Performing this calculation, we estimate Itrans(spo) = 1.96 bits of short-term memory in the sporulation reporter; 
Itrans(AprE) = 1.4855 bits of short-term memory in the degradative enzyme synthesis reporter, and Itrans(OD) = 1 bit of 
short-term memory in the growth dynamics reporter OD600. Thus, all three observables exhibit short-term 
memory of the cell histories tested, with the sporulation reporter exhibiting the most memory and growth 
dynamics the least.   
 
Dividing these absolute bit counts by the entropy of the cell history space, we estimate the short-term memory 
fidelities of sporulation initiation, degradative enzyme synthesis, and growth dynamics to be Ptrans(spo)= 
Itrans(spo)/H(M)=1.96/3.3219=0.59, Ptrans(AprE)= Itrans(AprE)/H(M)=1.48/3.3219=0.45, and  Ptrans(OD) = Itrans(OD)/H(M) = 
1/3.32≈0.3, respectively.  This means that if one were to observe all 30 short-term responses of one of the three 
reporters after t0 but not told which history corresponds to which trajectory, 59% of the uncertainty about cell 
history prior to time t0 could be reduced by observation of the transient sporulation reporter dynamics after time 
t0,  45% of this uncertainty about the past could be reduced by observation of the degradative enzyme synthesis 
reporter dynamics after t0, and only 30% of this uncertainty could be reduced by observation of the growth 
dynamics after t0.   More intuitively, one could say that 59%, 45% and 30% of the cell histories tested are 
‘remembered’ by the short-term dynamics of the sporulation, degradative enzyme synthesis, and growth 
reporters, respectively (see Fig. 7 and Table S1). 
 

All observables exhibit long-term memory of cell hi story, though at a lower bit 
count than short-term memory 
  
Though short term memory can be important—because even short term behavioral differences may have fitness 
consequences [59], especially if they are on the order of environmental fluctuations [28,60]—long term memory 
is generally the first thing that comes to mind when memory is discussed [61-64].  One might expect long term 
memory in B. subtilis stress responses - sporulation control especially - because of the feedback topologies in 
their regulatory circuitry and reportedly bistable behaviors [10,36-39].   
 
To estimate the long term memory in each individual pathway we first clustered the final segment of the 30 time 
series of each reporter (from 21 to 24 hours after t0) to estimate the number of distinct long-term behaviors for 
each of the three pathway reporters (results = 2 unequal-sized clusters for each reporter, as shown in Fig. 6, 
though the cluster sizes and associated cell histories differ across reporters).  We then calculated the mutual 
information between the clustering results and the cell history vector to arrive at lower bound estimates of 
Iasym(spo) = 0.8813 bits,  Iasym(AprE) = 0.72 bits, and Iasym(OD) = 0.97 bits of long-term memory in the networks 
controlling sporulation initiation, AprE synthesis and growth dynamics, respectively.  Thus, like a switch, there 
appear to be two, stable, long term behaviors for each pathway reporter, though the probability of converging to 
each is not equal or the same across reporters, as is reflected by distinct bit counts of less than 1 (if half the past 
histories lead to one attractor and the other half of the histories lead to the other, there would be 1 bit of 
asymptotic memory).   
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Dividing these absolute numbers by the entropy of the cell history space, we estimate the long-term memory 
fidelities of sporulation initiation, degradative enzyme synthesis, and growth to be  Pasym(spo)= Iasym(spo)/H(M) = 
0.8813/3.3219 = 0.265, Pasym(AprE)= 0.22, and Pasym(OD)= 0.29, respectively.  Thus, approximately 25% of the 
uncertainty about cell history prior to the onset of starvation is reduced by knowledge of any one of the three 
long-term reporter dynamics in the starvation environment.   To summarize, all three observables exhibit around 
1 bit of long-term memory of the histories tested, though of different aspects of cell history as will be shown 
below.  One bit is a significant amount but much less than the nearly 2 bits of memory seen in the most retentive 
short-term response. 
 

Different observables remember different aspects of  cell history to different 
degrees   
 
The above memory estimates are in a sense high-level, because each of the 10 distinct cell histories is treated 
identically.  By drilling down a level of resolution to the component parts of the cell histories – initial nutrient 
composition of the media and cell density reached in that media (which can also feasibly affect both the 
nutritional composition of the medium and cell state while in log phase) – we can investigate which aspects of 
cell history are remembered by the observables and for how long.   
 
In the short term, all three observables have a perfect memory of whether they were grown in LB or GM, and 
only a partial memory of their density in this medium.   Put more formally, if we consider growth medium in 
isolation and calculate the mutual information between growth medium prior to time t0 and transient response of 
the three reporters to starvation after time t0, we see that a history of growth in LB can be distinguished from a 
history of growth in GM with 100% memory fidelity (Ptrans(Spo)(Medium1;Y;ttrans=11 hrs) = 
Ptrans(AprE)(Medium1;Y;ttrans=11 hrs) =  Ptrans(OD)(Medium1;Y; ttrans=11 hrs) =1, where Medium1 is a random 
variable representing growth medium prior to time t0, and can take on the values GM or LB). In contrast, the 
ability of the pathways to remember the  population density reached prior to t0 (and any changes in cell state 
these differences in cell density create) is less simple.  With a history of growth in GM, the cell density prior to 
the onset of starvation at t0 is not ‘remembered’ by the short-term B. subtilis sporulation, degradative enzyme 
synthesis, or growth dynamics responses, even transiently (0% memory fidelity), as all responses are 
indistinguishable within noise (Itrans(Density1/Medium1= GM;Y; ttrans=11hrs)=0). However, when grown in LB, 
the cell density prior to t0 is remembered with 80% memory fidelity by the transient sporulation dynamics and 
with 60% memory fidelity by the transient AprE dynamics (Ptrans(Spo)(Density1/Medium1=LB;Y; ttrans=11 hrs) 
=0.8; Ptrans(AprE)(Density1/Medium1=LB;Y; ttrans=11 hrs) =0.6). 
 
In the long term, all three observables have only a partial memory of which medium they were grown in, and to 
what density.  Like in the transient memory case, past growth medium is remembered better than past cell 
density, but unlike in the transient memory case, there is no perfectly clean dividing line separating out the long-
term responses to the two growth media histories.  For example, given observations of the long-term behavior of 
the sporulation reporter, a history of growth in LB can be distinguished from a history of growth in GM with 
only 39% memory fidelity (Iasym(spo)(Medium1;Y)/H(Medium1)=0.39), whereas cell densities (grouped into five 
classes, (D,-1,-2,-3 and -4)) prior to t0 are remembered even less well, with only 12.1% memory fidelity 
(Iasym(spo)(Density1;Y)/H(Density1)=0.121).  A similar pattern can be seen in the long-term memories of the other 
two reporters.  Interestingly, though each reporter exhibits two possible long-term behaviors, the clusters are 
different sizes and the histories that correspond to each behavioral cluster are different for different pathways. 
As will be shown in the next section, these differences lead to the possibility of an increased memory capacity in 
the higher dimensional space defined by the combined activities of multiple pathways.   
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There is more long-term memory in the combined acti vity of the observables 
than is present in any individual observable   

 
Interestingly, analysis of the transient memory of the pairs of pathway readouts (Spo, AprE), (Spo, OD600), and 
(AprE, OD600)) shows no increase in memory in the higher dimensional space than is found in the most retentive 
pathway in the dyad (see Figure 7).  For example, we estimate the transient memory found in the pair (AprE, 
OD600) to be 1.4855 bits, which is the same bit count found in AprE alone (Memorth(trans)(M;(AprE, OD600)) = 
(1.4855-1.4855)/(1.4855) = 0).  Likewise, the three-dimensional readout (Spo, AprE, OD600) shows no more 
transient memory than is found in the sporulation pathway (1.96 bits), its most retentive member.   
 
However, the same conclusion does not follow for asymptotic memory.  Every pair of pathway readouts 
contains more asymptotic memory than either constituent signal, and the triple pathway readout contains more 
asymptotic memory (at 1.57 bits) than any of the constituent pairs (see Figure 7).  This implies that the long 
term behavior of our three observables occupies a relatively high dimensional space, with each subsystem 
responding differently to aspects of past conditions. For example, though the AprE pathway is estimated to have 
only 0.7219 bits of asymptotic memory and the growth measure OD600 has only 0.971 bits of asymptotic 
memory, the pair (AprE, OD600) has 1.371 bits of asymptotic memory (Memorth(asym)(M;(AprE, OD600)) = (1.371-
0.971)/(0.7219)=0.554, or 55.4% of the maximum).  Put more concretely, the asymptotic behavior of the AprE 
signal alone ‘remembers’ two classes of cell history: the first a history of growth in rich medium to higher 
densities and the second all other histories in the compendium. Whereas observations of the asymptotic behavior 
of the growth signal allow distinction between two different classes of cell history; the first growth in rich 
medium to all densities greater than the lowest tested (-4), and the second all other histories in the compendium.  
Viewed together as a combined vector in a higher dimensional space, the asymptotes of the pair (AprE, OD600) 
permit distinction between three classes of cell history: growth in rich medium to higher cell densities, growth in 
rich medium to low (but not lowest) and intermediate cell densities, and, finally, growth in rich medium to the 
lowest density or growth in poorer medium to any density. Adding the sporulation signal increases the 
information storage yet again, by adding another discernable class, leading to a total long-term combinatorial 
storage of 1.57 bits.  Thus, because the different cellular systems in B. subtilis remember different aspects of 
prior history, the combined activity of multiple pathways is able to combinatorially store more information 
about the past than can any individual pathway.  However, the total asymptotic memory is still somewhat less 
than the total transient memory (1.57 vs. 1.96 bits).  (For a complete accounting of cell history memory over all 
signal combinations, and for the mutual information between all pairs of signals, including the transient and 
asymptotic responses of each signal, see Figure 7 and Table S1.)   
 

Discussion 
 
Though evidence that bacterial cells are able to remember their histories and use these memories to alter their 
behavior in a fitness enhancing manner would not raise expectations that bacteria could recite π or write music, 
it would enrich the motifs-modules-games view of bacterial regulation [12] by adding game strategies with 
memory to the repertoire of microbes.  This exploratory paper does not provide evidence that B. subtilis, or any 
other microbe, is intelligent or is playing an evolved, fitness-enhancing memory strategy.  Rather, in this work 
we propose that the familiar phenomenon of history-dependent behavior in microbes reflects a form of memory 
worth studying systematically and quantifying, and that doing so sets the foundation for understanding both the 
mechanisms and function of memory in cell behavior and fitness.   To this end we formulated a conceptual 
information-theory based framework for measuring microbial memory, thereby introducing tools that begin to 
observe and quantify the relationship between past cell history and future cell behavior from a new angle.  This 
method produces a phenomenological measure of cellular memory without regard to the specific cellular 
mechanisms encoding it.  
 



 11

We then applied these tools to a simple set of medium-shift experiments on B. subtilis, in the process 
demonstrating that B. subtilis does ‘remember’, both in the short and long term, aspects of its cell history, and 
that this memory is distributed differently among the observables.  More short term than long term memory was 
evident, with short-term sporulation dynamics exhibiting the most memory and long-term degradative enzyme 
AprE synthesis dynamics the least.  As expected, some but not all of the history-dependence between the 
sporulation and AprE reporters is shared (AprE has 75% of the short-term and 80% of the long-term memory 
estimated for sporulation).  We also illustrated how to quantify memory in multiple combined variables, in the 
process showing that because the different cellular systems in B. subtilis remember different aspects of prior 
history to different degrees, the combined activity of multiple pathways is able to combinatorially store more 
information about the past than can any individual pathway.  Of the two components of cell history varied in our 
compendium – past growth medium and the cell density reached in this medium, which can alter cell state even 
in log phase – growth medium appeared to be better remembered by B. subtilis, with past density remembered 
best when originally grown in the medium richest with nutrients, LB.  Admittedly we do not yet know whether 
the memory we have observed is fitness enhancing and evolved or just incidental, or what molecular 
mechanisms or artifacts are responsible for the observed pattern of memory storage. Rather, these simple 
experiments and the surrounding analysis and framework demonstrate what could be the beginning of a larger 
memory program, and indicate that memory in cellular behaviors may be a rich area for further exploration. 
 

Ideas for a more complete memory-in-microbes resear ch program 
 
A more complete program for investigating memory in bacteria would encompass at least three lines of inquiry, 
essentially the ‘what’, ‘how’, and ‘why’ of bacterial memory.  The first line of inquiry (what), for which this 
study is an example, is the quantification of environmental memory in a microbe.  This study could be extended 
by resolving the population-averaged behavior analyzed in this paper into single-cell measurements and memory 
classification and quantification. Given that sporulation is thought to be a stochastically triggered bistable 
developmental process [10,36-39], one might expect the population-averaged measurements (Figure 5.b) to 
resolve into bimodal distributions of high and low GFP-expressing cells. And since AprE synthesis control is 
believed to be more deterministic and analog, one might expect more monomodal distributions.   Preliminary 
data from flow cytometry analysis support this expectation, at least for some histories and time points (see 
Figure S1 in Supplemental Information), but further work is needed to determine for what conditions and 
pathways memory at the single-cell level can be classified as stochastic, and the form and quantification of this 
stochasticity. An exploration of the memory characteristics of other cellular players active in these and 
interacting networks, and the space of their environmental sensitivity, with the goal of estimating the ‘true’ 
memory capacity of the system, are other possible extensions of this work.  
 
A second line of inquiry (how) would build upon the first by elucidating the causal basis for any observed 
environmental memory.  Though many genetic and epigenetic bacterial switching mechanisms have been 
elucidated [8,10,16], still unclear is exactly how different types of environmental and intercellular signals might 
be encoded and remembered within cellular circuitry for varying lengths of time, a question addressable through 
mutant studies and modeling.  On the ‘meta’ level one could ask whether memory is stored within single cells, 
population distributions, or in the larger state space defined by the cell-environment interaction through 
distributions of nutrients, waste products, enzymes, signaling molecules, biofilm generating conditions, and so 
on.  A third line of inquiry could focus on the ‘why’s’ of environmental memory.  Is environmental memory, if 
it exists, controlled or incidental: evolutionarily advantageous, deleterious, or neutral?  Is there evidence that 
memory-modulation of phenotype expression control does not provide a fitness advantage in the present but 
rather in a future implicitly anticipated from past experiences, thus implying an internal model of environmental 
dynamics (in analogy to the internal model principle in control [65])?  We suspect that answers to these ‘why’ 
questions could be key to whether the others are worth deeply pursuing. 
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What do the B. subtilis memory observations in this case study mean? 
 
Though we do not yet know whether the memory we have observed is fitness enhancing and evolved, or merely 
incidental, we can speculate. Looking qualitatively at the three behavioral observables together, we notice that 
when cells are grown to low density in the less rich GM medium prior to the onset of starvation conditions, they 
on average grow very fast after resuspension in starvation media, and after a brief lag start turning on their 
degradative enzyme synthesis and their probabilistic sporulation machinery, even as the population continues to 
grow. Whereas when cells are grown in richer, nutrient filled LB medium to the same low density prior to the 
onset of starvation conditions, they take a quite different approach.   In this case, cells seem to adopt a wait-and-
see strategy, forgoing growth and delaying sporulation and AprE synthesis for many hours. 
 
A game strategy with memory?:  The most tempting speculation is that B. subtilis is playing a memory 
strategy in an evolutionary game.  From a game perspective, one could take these observations as a sign that 
after transitioning from a less rich medium to starvation, B. subtilis uses its memory of past nutrient-limited 
growth in the context of an implicit internal model of environmental dynamics to ‘predict’ how long starvation 
conditions will last.  If the cells expect starvation to last a long time, a rational course of action might be to 
create as many spores as possible, as fast as possible, to maximize the spore count that will lie dormant until the 
next period of nutritional plenty.  On the other hand, if growth in a rich environment prior to starvation in the 
context of this internal model produces a prediction of a short period of starvation, the rational action might be 
to delay sporulation, thereby decreasing the chances of having committed irreversibly to an unnecessary, costly 
8 hour developmental program during which conditions could improve and the cells could be growing.  Viewed 
in this way, B. subtilis’s cell-history dependent behavior might constitute an evolved probabilistic memory 
strategy in its game of survival.  Such a strategy would trump diversification strategies without memory  [28-
30,35,66,67], and be analogous to adaptive model-based bet hedging over a diversified portfolio in the stock 
market  [28].  
 
If the above scenario is true, one would expect sporulation initiation delay to be a likely feature of the 
sporulation regulation strategy of B. subtilis to exhibit memory.  Within our experimental compendium, the 
delay in turning on the sporulation machinery, as estimated by the amount of time it takes for GFP to start being 
noticeably expressed from the SpoIIE promoter by a population (normalized GFP intensity > 0.035, after which 
GFP rapidly increases), ranges from a relatively short 1.5 hours to a much longer nearly 8 or more hours after 
the onset of starvation (Figs. 5b and S2 in Supplemental Information).    Calculating the mutual information 
between GFP expression delays and cell history, we see that most (86%) of the short-term memory in the 
sporulation reporter can be recapitulated by reducing the trajectories to this single number (I(M; Initiation 
Delay)/Itrans(M;Y;ttrans=11hrs) = 1.685/1.96 ≈ 0.86).  This calculation does not prove that the history-dependence 
we have observed is an evolved and fitness enhancing memory strategy in a game, but it is suggestive. 
 
…or an artifact of metabolism?:  Then again, the explanation could have little to do with evolutionary 
games.  It could be that differences in metabolic stores, housekeeping apparatus, or metabolic state induced by 
the different media and different biomass of the culture simply represent initial conditions from which entry into 
sporulation and other stress responses is more or less easy [1].  For example there might be more ribosomes after 
growth in LB than there are after growth in GM, forcing cells coming from the latter to stop growth and initiate 
sporulation sooner.  Or it could be that growth in GM, a medium that while not nutrient-limited is lacking the 
excess of simple carbon and nitrogen sources and readily available amino acids found in LB, activates metabolic 
pathways that can facilitate growth and spore formation in stress conditions. Then, when transferred to 
starvation conditions, cells might be able to use this metabolic machinery (and perhaps some form of 
intracellular nutrient storage) to scavenge whatever scarce nutrients are to be found in the new medium in order 
to grow and turn on their sporulation and degradative enzyme pathways nearly immediately.  Whereas with a 
history of growth in rich, complex  LB medium, cells might enter starvation conditions of SM without 
enzymatic or other reserves necessary for a near-immediate response to severely limited conditions, and thus 
require a delay while the cells construct the necessary metabolic machinery to acclimate to their environment.  
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These possibilities are not mutually exclusive; history-dependent behaviors could stem from some combination 
of evolved diversification game strategy and artifactual adaptive metabolic processes.  Experiments comparing 
the fitness of wildtype bacteria to mutants with disrupted memory mechanisms coupled to a game theoretic 
analysis will be necessary to distinguish among the possibilities, and would identify the mechanistic source of 
memory behaviors in the process.   In any case, we hope that this conceptual framework and analytical approach 
to quantifying memory in cellular behaviors will be a useful point of departure for studying a new set of 
questions about cellular regulation and evolutionary strategy in microbes. 
 

Materials and Methods 
 
Strains and culture media.  Bacillus subtilis 168 trpC (Bacillus Genetic Stock center) was used as the 
wild-type strain. Escherichia coli strain DH5α was used for all plasmid amplifications and isolations. 
Escherichia coli was grown at 37°C in LB supplemented, when necessary, with ampicillin at a final 
concentration of 100 µg/ml. B. subtilis was cultured at 37°C in either LB, growth medium (GM) or sporulation 
medium (SM).  GM and SM media are commonly used in the ‘induction of sporulation by resuspension 
protocol’ described by Harwood and Cutting [58]  and were supplemented with 50µg/ml and 20 µg/ml L-
tryptophan respectively. Antibiotics were added, with the following final concentrations: chloramphenicol, 5 
µg/ml; spectinomycin, 100 µg/ml.  
 
DNA isolation and manipulation.  Total genomic DNA from B. subtilis 168 was isolated with 
DNeasy Blood & Tissue Kit (Qiagen) following manufacturer’s protocol for Gram positive bacteria. Plasmid 
DNA was extracted from E. coli with the QIAprep kit (Qiagen). DNA restriction and cloning were performed 
according to standard procedures [68]. Restriction enzymes and T4 DNA ligase were obtained from New 
England BioLabs and used according to the manufacturer’s instructions. DNA fragments were purified from 
agarose gels with the QIAquick gel purification kit (Qiagen). Vent DNA polymerase (New England Biolabs) 
was used for PCRs. 
 
B. subtilis reporter strain construction.   Strains and plasmids are listed in Table S2 in 
Supplemental Information.  To integrate the fluorescent reporter fusions in the B. subtilis genome the pLFKEE 
integration vector was constructed as followed. The GFP variant GFPmut2 [69] was excised from pMF19 [70] 
by digestion with BamHI/EcoRI enzymes and ligated into pEA18 (a gift from Antje Hofmeister) digested with 
the same enzymes, to give pLF22. The plasmid pEA18 (cmp, spc) is a vector [71] allowing integration by 
double cross-over at the amyE locus, with a chloramphenicol selection.  The spoIIE promoter (PspoIIE) was 
amplified by PCR from B. subtilis 168 genomic DNA using primers PspoIIE-D/EcoRI 
(atcacggaattcaaatcggtttctcttgcagaagccg) and PspoIIEM-R/HindIII (atacaaagcttttatattcgttgcctgtcattatagcg), and 
digested with EcoRI and HindIII, then ligated 5’ of gfpmut2 on pLF22 that had been digested with the same 
enzymes to give pLF25 (PspoIIE-gfp, cmp). The transcriptional profile of the spoIIE gene was verified by total 
RNA dot blot before and after induction of sporulation to confirm its early and specific expression induction at 
the onset of sporulation (see Figure S3).  

To obtain the PaprE-dsred fusion, the dsredexpress coding sequence was amplified by PCR from pDsRed-
Express (Clontech) using primers DsRed-D/FseI (tacggccggcctaaggaggaactacaaatggcgagcagtgaggacatcatcaagg) 
and DsRed-X/EcoRV (agatatcgatcagatctacaggaacaggtggtggcg). The PCR fragment obtained was digested with 
FseI and EcoRV. A modified version of the aprE promoter (PaprE) (developed and tested in [72]) was amplified 
by PCR from pSG-TTGACA [72] using primers PaprESG-D/AgeI (tgaaccggttgtcaaacatgagaattcagcg) and 
PaprE-R/FseI (caaggccggccaaattcagagtagacttacttaaaagac). The resulting PCR fragment was digested with AgeI 
and FseI and ligated with FseI/EcoRV-digested dsredexpress into AgeI/EcoRV-digested pLF25 in a three-point 
ligation to give pLFKEE (PspoIIE-gfp, PaprE-dsred, cmp spc).  Selection of plasmid constructions in E. coli clones 
was done by adding ampicillin as described above and correct fusions were verified by sequencing. 
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To construct B. subtilis KEE, pLFKEE was transformed into B. subtilis 168 competent cells as previously 
described [58] and selected on LB solid medium supplemented with chloramphenicol. Integration clones were 
screened for their amyE phenotype on LB + 1% starch solid medium [58]. The inability of the clones obtained to 
grow on spectinomycin was checked to eliminate single cross-over plasmid integration events. Correct 
integration of the fusion at the amyE locus was verified by PCR analysis. 
 
Medium-shift experimental protocol.   Before each experiment, cells were streaked from –80°C 
glycerol stocks on LB plates with chloramphenicol and grown overnight. One colony was picked and inoculated 
in 5 ml liquid LB medium with chloramphenicol in a series of dilution tubes and grown overnight at 37°C. The 
culture the closest to OD600 of 1.0 was used to inoculate 60 ml of LB or GM in 250-ml flasks to a final OD600 of 
0.05 (flask D) after elimination of the culture medium by centrifugation of the cells (6,000 x g, 3 min). The 
culture was split in two, and successive dilutions of 1:2 were performed to a total of 5 flasks of 30 ml culture 
(flask D and dilution flasks: -1, -2, -3, -4). Cells in all four flasks were grown simultaneously at 37°C, 200 rpm, 
until the most concentrated culture grew to an OD600 of 1.0 (Flask D). Then, 25 ml of each culture were 
harvested by centrifugation (8,000 x g, 5 min) and resuspended in a pre-warmed SM medium volume calculated 
to obtain a final OD of 0.5 (medium density). Three aliquots of 200 µl from each flask were transferred to a 
sterile Costar 96-well black plate with flat clear bottom (Corning). Cells in the plate were grown in a Tecan 
Safire microplate spectrophotometer at 37°C medium linear shaking setting (395 rpm). Culture turbidity (OD600) 
and fluorescence were measured at 15 minutes intervals for a total time of 24 hours. GFPmut2 was read at 
wavelengths of 481 nm (excitation) and 507 nm (emission), and DsRedexpress was read at 557 nm (excitation) 
and 579 nm (emission). 
 
Memory and mutual information analysis.   There are a number of ways to translate the memory 
quantification definitions in Appendix S1 into an analysis algorithm.  We took a simple fixed-interval, 
clustering-based approach executed as a five-step algorithm implemented the MATLAB© 
(http://www.mathworks.com/) analysis environment, as follows (see Supplemental Information Section S2 for 
schematic): 
 
(step 0 – select time intervals): The first step in analyzing the data is to select time intervals to analyze. We parsed the 
time series data (30 trajectories measured over 24 hours for each of three observables) into a ‘short-term’ set taken well 
before steady-state is reached (first 11 hours after t0, the onset of starvation – though we could have taken any endpoint 
between 8 and 19 hours and obtained the same result (see panel (b) in Section S3)) and an ‘long-term’ set. For our 
purposes, we take as our ‘proxy’ for long-term, asymptotic behavior the last three hours of our measurements, from 21 to 
24 hours after t0, because by then all signals have remained flat for several hours.  Experiments run for longer periods of 
time indicate that these signals remain flat for as long as we have measured them (36 hours, data not shown). However, we 
view this long-term data set as only a proxy for asymptotic behavior because though these signals remain constant for at 
least 36 hours, cells are forming spores and might be physiologically changing in other respects during this period and 
beyond.  
 
(step 1 – cluster data):  We used the Matlab script in S2.2 to hierarchically cluster the 30 short-term and 30 long-term 
trajectories of each observable (10 cell histories x 3 replicates) and to select  ‘optimal’ clustering partitions for each. The 
assumption here is that the behavior of the observable (e.g., GFP intensity) falls into distinct classes, for example, 
increasing or decreasing. This script a) constructs a Euclidean distance matrix with the Matlab function pdist.m, b) 
constructs dendrograms using ward and average linkage with the function dendrogram.m, c) performs silhouette analysis on 
all tree cuts of both trees from (b) with the Matlab function silhouette.m [73], and d) ‘optimizes’ data clustering by 
selecting the partition that maximizes the mean silhouette, a measure of the compactness and separation of the clusters in 
the partition [73]. This step produced six 30x1 cluster vectors, one short-term and one long-term cluster vector for each of 
the three observables (i.e., ClustSPO_short, ClustSPO_long, ClustAprE_short, ClustAprE_long, ClustOD_short, 
ClustOD_short).  
 
(step 2 – estimate memory): Next we estimated the short-term and long-term memory in bits of each individual observable 
with the Matlab program Entropy_MutualInfo.m in S2.1.  This program accepts two input vectors, A and B, and calculates 
from them individual informational entropies H(A) and H(B),  the entropy of the pair H(A,B), and the mutual information 
between A and B,  I(A;B) = H(A)+H(B)-H(A,B).  H(X) is defined in Supplementary Information (Appendix S1), and 
H(X,Y) is calculated by first calculating the joint probability distribution over (X,Y) and then calculating the entropy H 

http://www.mathworks.com/
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over this joint distribution. Thus, memory is estimated to be the mutual information between cell history and cell behavior 
and calculated by calling Entropy_MutualInfo.m with input vectors A=M=[1 1 1 2 2 2 …10 10 10],  the cell history vector , 
and B equal to one of the six cluster vectors from step 1. To calculate memory fidelities, we normalized these memory 
estimates by dividing by H(M)=3.32, the entropy of the cell history space.   
 
(step 3 – estimate memory in higher dimensions): The third step of the algorithm is to estimate the short and long-term 
memory exhibited by the combined activities of pairs of observables and by the triple of observables.  To do this, we first 
used the script in S2.3 to combine cluster vectors from multiple read-outs.  This script takes as its input two cluster vectors 
Clust1 and Clust2 and outputs a combined cluster vector Clust3 (e.g., if Clust1=ClustSpo_short; and 
Clust2=ClustAprE_short; then the output Clust3 is a vector capturing all combined short-term behaviors of Spo and AprE, 
for example (Spo,AprE)=(increasing, decreasing), (increasing, increasing) or (decreasing, decreasing)).  Next, by calling 
Entropy_MutualInfo.m with inputs A=(the cell history vector M), and B=(the combined cluster vector Clust3), we calculate 
the mutual information between cell history and cell behavior, and thus the memory exhibited by the combined activity of 
the vector of observables contributing to Clust3. After computing short- and long-term memory for all four possible vector 
combinations of the observables, these estimates were divided by H(M) to estimate memory fidelities and normalized 
according to Definition (6) in Methods to estimate memory orthogonalities. Finally, we (step 4) calculated the mutual 
information between all pairs of observables using the cluster vectors from (step 1) as inputs to Entropy_MutualInfo.m.  
 
We took this fixed-interval, clustering-based approach because of our desire to focus on how different cell 
histories can lead to qualitatively different stress response behaviors, and because a much larger data set would 
be required to use algorithms such as that suggested by Swinney to estimate mutual information at measurement 
intervals short enough to avoid excessive ‘blurring’ of the time series dynamics [74,75]. See Section S3 in 
Supplemental Information for a detailed discussion of alternative approaches and why we chose the one we did, 
and Section S2 for Matlab scripts and programs, including a note on a bootstrap method for calculating 
confidence intervals that one could apply to data sets with a sufficient number of replicates (not present in this 
data set). 
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Figure Captions 
 
Figure 1:  The B. subtilis stress response meta-network, where each oval represents both a stress response and the 
regulatory network of 100 or so interacting molecular species that regulates it. Among the many ingenious genetic and 
biochemical programs employed by B. subtilis to cope with environmentally adverse conditions are its ability to take up 
extracellular DNA, competence [40,76]; differentiate into an inert heat-, chemical, and UV-resistant spore [37]; secrete 
degradative enzymes to identify and digest new food sources [77]; become motile and  chemotax toward possibly better 
surroundings [78]; synthesize antibiotics to eliminate competitors in the same ecosystem [79,80];  turn on alternative 
metabolic pathways, and form biofilms ([81], not shown), just to name a few [38]. The cross-repressive feedback between 
sporulation and competence, and the many positive feedback loops within each large ‘individual’ stress response pathway 
[10,36-40,82], are suggestive of switches and other elements that could potentially encode memory.  The two stress 
response pathways monitored in our experiments, sporulation and synthesis of the degradative enzyme subtilisin, are 
denoted by bold-faced ovals.   The  fluorescent reporters (GFP and DsRed) fused to the respective promoters PspoIIE and 
PaprE are indicated (see Materials and Methods). 
 
Figure 2:  An ‘adaptive’ memory experiment.  In an adaptive memory experiment, each (identical) sample of a 
biological system is subjected to one of several conditions prior to time t0, and then observed in a common condition after 
t0.  If different past histories lead to different short-term behaviors in current conditions, the system can be said to exhibit 
short-term memory.  If different past histories lead to different long-term behaviors, the system can be said to exhibit long-
term memory. 
 
Figure 3: Information-based conceptual schema for measuring memory in microbes.  In communication theory (top), the 
informational entropy of the signal space H(X) captures the number of different messages X that can be communicated and 
their probabilistic dispersal; the mutual information I(X,Y) between transmitted and received signals quantifies the amount 
of information actually communicated.  A memory experiment, in contrast, involves subjecting cells to distinct treatments 
M prior to time t0, followed by an identical treatment S after time t0, with cell behavior from t0 on monitored through 
temporal sampling of one or more observable variables Y.  As applied to bacterial memory (bottom), the informational 
entropy of the cell history space H(M) captures the number of different cell histories prior to time t0 tested by the 
experimental compendium and their probabilistic dispersal; the mutual information  Itrans(M;Y;ttrans) between the transient 
response of the observable variable Y after time t0 and the cell history prior to time t0 captures the short-term memory of 
cell history exhibited by Y over the cell history space in response to treatment S.  Likewise, the mutual information 
Iasym(M,Y) between the long-term response of Y and cell history prior to t0 captures the long-term memory of cell history 
exhibited by Y. 
 
Figure 4: Different types of history-dependent behavior one might observe.  a) Short-term deterministic memory.  State 
trajectories ‘remember’ their initial condition for some time, and then converge to a common asymptotic behavior.  b) 
Long-term deterministic memory.  State trajectories of multi-stable systems ‘remember’ which basin of attraction their 
initial condition started in indefinitely (the basin containing X01 vs. the basin containing X02 and X03), but retain a memory 
of the exact initial condition within a basin of attraction only transiently (X02 vs. X03).  c) Short-term and Long-term 
memory in a system with unobservable states. The state space of the cell is two dimensional (X,Y), but only one of the two 
dimensions, X, is observed.  Though all four initial conditions are distinct in the larger space, the unobserved Y component 
renders them identical to the observer.  Thus the trajectories appear to diverge from a common starting point and approach 
one of two asymptotic states. This gives the observer the impression of first an increase in information and memory and 
then a decrease as the trajectories approach their long-term values. d,e) If measurements are made on single cells rather than 
on averaged populations (as we did in this paper), history-dependent distributions may be observed.  d) Short-term 
stochastic memory. State trajectories are probabilistic in individual cells, with a distribution over the population that 
initially retains a ‘memory’ of the initial condition of the population.  In the long-term, this memory degrades as the 
distribution approaches a global attractor.  e) Long-term stochastic memory. The distribution over the population retains a 
‘memory’ of the initial condition indefinitely, or at least over the time-horizon of the experiment. 
 
Figure 5:  B. subtilis memory data compendium. These plots show the dynamics of the sporulation initiation reporter 
PspoIIE-gfp expression (a), the degradative enzyme synthesis reporter PaprE-dsred expression (b), and cell growth (c) of B. 
subtilis KEE after the onset of starvation (resuspension in SM) as a function of cell history prior to starvation, as measured 
by fluorescence (GFP, and DsRed) and OD600 time series measurements taken every 15 minutes for 24 hours, respectively.  
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The 10 cell histories tested consisted of growth in either rich LB medium or poorer GM medium to one of five densities D, 
−1, −2, −3, −4,  (see experimental overview section and Materials and Methods for details).  Fluorescent intensities in (a-b) 
were divided by OD600 (c) and then normalized to a [0 1] scale by dividing by the maximum. The error bars show standard 
deviation over replicates at each time point.   
 
Figure 6:  The map from cell history to B. subtilis stress response clusters.  The transient dynamics and long-term levels 
of the sporulation initiation (PspoIIE-gfp expression), AprE synthesis (PaprE-dsred expression), and growth (OD600) 
signals were clustered using the automatic method in Materials and Methods.  This figure shows the heat maps for each 
signal in Figure 5 (dark red indicates maximum, and dark blue minimum), the number of behavioral classes for each signal, 
and which subset of the ten cell histories in our test set corresponds to each cluster.  For example, the asymptotic 
sporulation initiation signal from PspoIIE-gfp fusion clustered into two classes, one (top, 1) corresponding to a history of 
growth in rich LB medium to the three highest densities, D, −1, and −2, and the other class (bottom, 2) corresponding to all 
other cell histories. 
 
Figure 7:  Estimates of cell-history memory and mutual information in B. subtilis. The upper left bar plot shows our 
estimate of long-term (blue bars) and short-term (first 11 hours, red bars) memory fidelity (% of the maximum recoverable 
information about cell history) exhibited in starvation medium SM by sporulation initiation (PspoIIE-gfp expression), 
degradative enzyme synthesis (PaprE-dsred expression), and growth dynamics (OD600), and over all vector pairs of 
observable read-outs and the vector triple, with respect to the cell history space tested by our compendium.  The lower right 
bar plot shows our estimate of the number of bits of mutual information shared by all pairs of short-term (red bars) and 
long-term (blue bars) observable signals in our memory data compendium.  The surrounding flow diagram circuit illustrates 
the experimental and analytical scenario. 
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Table  
 
 
 
 
n Cell 

history 
                   Cell History Description 

1 LB: D Grown in LB (rich medium) to density D (OD600 = 1) 
2 LB: −1 Grown in LB to density −1 (OD600≈ 0.65) 
3 LB: −2 Grown in LB to density −2 (OD600≈ 0.4) 
4 LB: −3 Grown in LB to density −3 (OD600≈ 0.2) 
5 LB: −4 Grown in LB to density −4 (OD600≈ 0.1) 
6 GM: D Grown in GM (less rich medium) to density D 
7 GM: −1 Grown in GM to density −1 
8 GM: −2 Grown in GM to density −2 
9 GM: −3 Grown in GM to density −3 
10 GM: −4 Grown in GM to density −4 
 
 
 
Table 1:   Cell history table. The cell history space M consists of 10 cell histories M=(Medium1,Density1):  growth in 
either rich Luria Broth medium (LB) or a less rich growth medium (GM) [58] to one of five cell densities, D, −1, −2, −3, 
−4. 
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Appendix S1.  Memory quantification definitions 
 
1. (Adaptive) memory experiment compendium: A set of experiments in which populations of one or 

more cells are subjected to distinct treatments m prior to time t0, and an identical treatment S 
following t0, with at least one observable read-out of behavior Y sampled over a time series 
following t0.  The set of all data collected from the memory experiment compendium, viewed as a 
measurement-transformed sampling of the map from past cell history to future cellular response, is 
called the memory data compendium. 

 
2. Entropy of cell history space tested:  Within the memory experiment compendium, cell history M 

is considered a random variable.  If  Μ  is the set of all experimentally tested cell 
treatments/histories m prior to t0 that M could be, and p(m) = Pr(M = m), then M has 

∑
Μ∈

−=
m

mpmpMH ))((log)()( 2  bits of informational entropy [1]. 

 
3. Long term memory: Let tasym be the time it takes for the observable response Y to approach steady 

state.  Then within M, the cells under study exhibit Iasym(M;Y)≡  I(M;Y(t=t0+tasym:∞)) bits of long 
term memory in the observable response Y to stress condition S. 

 
4. Short term memory:  Let ttrans < tasym.  Though short-term, transient behavior (and memory) may 

be measured over any interval or at any time point between t0 and tasym (see the discussion in SI.2) 
we use the interval [t0 ttrans]  in our memory calculations as follows: within M the cells under study 
exhibit Itrans(M;Y; ttrans)≡  I(M;Y(t = t0:t0+ ttrans )) bits of short term memory over (t0: t0+ ttrans) in 
the observable response Y to stress condition S. 

 
5. Memory fidelity: The short-term memory fidelity exhibited over (t0: t0+ ttrans) in response Y of the 

cells to stressor S given M is Ptrans(M; Y; ttrans)≡  I(M;Y(t = t0:t0+ttrans))/H(M).  The long-term 
memory fidelity exhibited in response Y of the cells to stressor S given the cell history space M is 
Pasym(M;Y)≡  I(M;Y(t = t0+ tasym :∞))/H(M). This normalized mutual information metric, a measure 
between 0 and 1 of the fraction of uncertainty about the past conditions tested that is reduced by 
knowledge of future cellular response, has also been called the coefficient of constraint [2]. 

 
6. Memory orthogonality: The memory orthogonality between two pathway responses Y1 and Y2 of 

cells subjected to stress condition S given cell histories M is: Memorth(M;(Y1,Y2)) ≡ (I(M;(Y1,Y2))-
max(I(M;Y1),I(M;Y2)))/min(I(M;Y1),I(M;Y2)).  Memorth equals 1 if the two variables combined as a 
vector yield the upper bound of memory under these conditions, and 0 if the two variables in 
combination yield the lower bound (a consequence of the inequality 
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min(I(M;Y1),I(M;Y2))≤I(M;(Y1,Y2))≤ I(M;Y1)+ I(M;Y2) [2]). This definition extends naturally to 
output triples and higher order combinations, as well.  
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S2.  Fundamental limitations of memory experiments 
 
 

 
 
Figure S2.  Any attempt to quantify or classify memory is fundamentally limited by the possibility of 
unobservable states, uncontrolled and unobservable inputs, and measurement errors and distortions.  This 
figure shows a variety of initial conditions (start points, circles) in a toy cell state space, each corresponding to a 
different cell history up to time t0.  After t0, the system evolves over time to representative asymptotic behaviors 
(end points, triangles), including a deterministic steady state (green triangle in box B), bistability (both triangles 
in box B), and stochastic bistability (boxes C,B).  Box A shows distinct initial conditions that are observable if 
both X and Y are observed or only Y is observed, but not if only X is observed. Thus, the amount of history-
dependence in the system would be underestimated if only X were observed.  Likewise, box B shows distinct 
asymptotic states that are not observable if only X is measured.  The three trajectories starting in box A also 
demonstrate how memory of initial conditions can decrease over time, possibly even with no long term memory 
at all.   The trajectories passing through box D are resolvable only until measurement noise overwhelms the 
signal.  If measurements are averaged over the population, stochastic or multimodal features of the trajectory 
(boxes C, B) become invisible, whereas if measurements are taken over the population in the form of 
histograms (flow cytometry), a population consisting of cells that stochastically alternate between ‘off’ and ‘on’ 
states is indistinguishable from a population of cells that switch into one of the two states and then remain in that 
state for the duration of the experiment.. 
 
Unobservable states:  In a perfect world, one would take direct, noiseless, high-resolution 
measurements of every state variable in the cell and its environment, and exercise perfect control over 
input perturbations.  Real world experiments suffer from limitations due to imperfect observation and 
input control, lack of knowledge of the space of meaningful biological inputs, and finite time and 
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resources.  These limitations necessarily constrain our ability to detect, classify, and quantify memory.  
One major limitation derives from the presence of unobserved cell state variables  A real-world 
observer selects a small subset of state variables to observe and measure, thereby collapsing the high-
dimensional state space of a cell or population into a low-dimensional projection.  Collapsed dynamics 
can lead to misclassifying and misquantifying memory.    
 
Though physical first principles predict that chemistry within cells should behave like Markov 
processes, the presence of unobserved states can make a Markov memory appear to be non-Markov.  
If, for example, two initial conditions differ only in the y axis but have the same value along the x axis 
(Figure S2, box A), an observation of only the x-component of the two diverging trajectories would 
suggest to a naïve observer that the system behaviour depends not only on the initial condition, but also 
on the path leading to that initial condition.  For similar reasons, unobserved states can also lead to 
underestimates of transient and asymptotic memory.   Two system trajectories responding to two 
distinct cell histories may appear to be identical from the perspective of the low-dimensional 
observations, yet be perfectly distinct in the higher-dimensional native state space (Figure S2, boxes 
A,B).   
 
Uncontrolled, unobserved system inputs can also lead to misclassifying and misquantifying memory, 
though the errors are different.    If one were to repeat an experiment where a stimulus is applied and 
the system response is measured, and there are uncontrolled, unobserved, randomly varying input 
components that the observer is not aware of, a deterministic system could be misclassified as 
stochastic. If the uncontrolled, unobserved input correlates with the controlled portion of the input 
stimulus, one could overestimate the ability of the system to ‘remember’ the specific observed 
stimulus, though not the overall memory of the system.  
 
Measurement distortions, information loss and errors:  The next layer of challenge in quantifying 
cellular memory derives from imperfect and distorting measurement of cellular response.  Distortions 
and information loss arise from proxy measurements, instrument error, experimental error, time 
discretization/integration, and from indirect measurement modalities.   Fluorescent transcriptional 
fusions that supposedly measure promoter activity introduce their own protein transcription, 
translation, folding, and degradation dynamics, and can cause toxicity and therefore perturb the system 
being measured.   Errors from proxy measurements combine with those from instrument error, 
experimental error, and information loss from time discretization/integration to limit the resolution and 
dynamic range of the behavior we can observe.  This in turn can lead to underestimates of the amount 
of memory in a system (quantification errors).   The cell may have distinct trajectories and attractor 
states associated with distinct cell histories, but if the trajectories and states cannot be resolved due to 
the ‘noise’ in these various types of measurement error (Figure S2, box D), an underestimation of the 
memory capacity of the system will result.  Classification errors can result too, for example a 
stochastic response that appears deterministic because the distribution lies within measurement noise 
bounds.   
 
Measurement modalities operating on bulk, averaged populations are especially prone to classification 
ambiguities.   With bulk measurements as one obtains with fluorimetry, for example, averaged 
measurements over populations of cells conflate deterministic behavior  (all cells express some GFP) 
and stochastic bistability  (some cells express a high level of GFP and others express none) (Figure S2, 
boxes B, C).  This can lead to a memory classification error if one assumes the average measurement 
reflects individual cell behavior.   A memory quantification error (underestimate) can also result, if the 
average response to distinct cell histories is the same but the single-cell response distributions differ.    
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Population distribution measurements as one obtains through flow cytometry are less prone to 
classification errors, as they can distinguish between deterministic behavior and stochastic behavior, 
but they still suffer ambiguities discriminating between stochastic bistability associated with rapid 
transitioning between states bistability with little if any transitioning between states on experimental 
time scales.  They also lose information due to the limited dynamic range of the machine, finite 
binning of fluorescence levels, different sized cells, differential cell growth and death rates among cell 
subpopulations in different states, and the inability to follow single cell fates.  Even single-cell 
measurements from time-lapse microscopy suffer from sampling errors, image processing errors, 
errors due to fluctuating illumination and drift, and difficulty identifying rare events.   All of these 
errors distort trajectories and can lead to underestimations of memory. 
  
Because these limitations are inherent in the estimation of memory processes and most likely result in 
underestimates of the ability of the system to ‘remember’ the cell histories tested by the experimental 
compendium, we interpret quantifications of memory within our compendium as lower bound 
estimates. 
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S3.  Matlab codes for memory analysis 
 

 
Figure S3.  Schematic of a fixed-interval, information-based approach to quantifying memory in bacteria (A3 in 
Fig. S4). As described in Materials and Methods, in our implementation of a fixed-interval approach to memory 
quantification in bacteria we first (step 0) parse the time series data into a transient set and a long-term 
‘asymptotic set’.  Then, for the transient and asymptotic data sets, respectively, we: (step 1) use the Matlab 
scripts in S3.2 to hierarchically cluster the trajectories and select an ‘optimal’ partition using the Silhouette 
criterion, a clustering validation and optimization technique based on maximizing the compactness and 
separation of the clusters in a partition [1]. This step produced six cluster vectors, one transient and one 
‘asymptotic’ cluster vector for each of the three observables (i.e., ClustSPO_trans, ClustSPO_asym, 
ClustAprE_trans, ClustAprE_asym, ClustOD_trans, ClustOD_asym); (step 2) calculate memory in bits as the 
mutual information between cell history and cell behavior cluster for each observable on each time-scale using 
the Matlab program in S3.1 with input vectors ClustA=M=[1 1 1 2 2 2 …10 10 10] as the cell history vector and 
ClustB equal to one of the six cluster vectors from step 1.  To calculate memory fidelities, we normalized the 
memory estimates by dividing by H(M)=3.32, the entropy of the cell history space; (step 3) calculate memory in 
bits exhibited by pairs of observables and by the triple of observables by (a) using the script in S3.3 to combine 
cluster vectors from multiple read-outs (e.g., Clust1=GFP cluster vector; Clust2=DsRed cluster vector; 
Clust3=combined (GFP,DsRed) cluster vector) and (b) using as inputs to the program in S3.1, ClustA=(the cell 
history vector M) and ClustB=(the combined cluster vector Clust3), calculate  the mutual information between 
cell history and cell behavior in the higher dimensional spaces.  These estimates are normalized by H(M) to 
estimate memory fidelities and by Equation (1) to estimate memory orthogonalities. Finally, we (step 4, not 
shown) calculate the mutual information between the observables using the program in S3.1.   Though we did 
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not have enough replicates to meaningfully do so in this paper, with enough replicates one could estimate 
confidence intervals for all memory and mutual information bit counts by performing a statistical (non-
parametric) bootstrap analysis.  Such an analysis would involve random sampling with replacement from the 
replicate sets, followed by clustering and mutual information calculations for each derived data set to generate a 
distribution of memory estimates.  From this distribution, confidence intervals could easily be determined. 
 
 
S3.1)   Matlab program to calculate memory and mutual information (Steps 2-4 in the 
data analysis algorithm in Materials and Methods). 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Function: Entropy_MutualInfo.m                                        
% 
%Description: This MATLAB program accepts two input  vectors, A and B,  
%and calculates from them individual entropies H(A)  and H(B),  the    
%entropy of the pair H(A,B), and the mutual informa tion between A and  
%B: I(A;B) = H(A)+H(B)-H(A,B).   
% 
%Inputs:  
%     ClustA='optimal' clustering vector for A (eac h entry an integer)  
%     ClustB='optimal' clustering vector for B (eac h entry an integer)  
%Outputs:  
%     HA=entropy of A in bits  
%     HB=entropy of B in bits  
%     HAB=entropy of the vector (A,B)in bits  
%     IAB=mutual information of A and B in bits 
% 
%Interpretation: IF (A=cell history) and (B=Respons e)      
%                THEN memory = IAB. IF (A=response 1) and (B=Response2)                 
%                THEN mutual information = IAB and memory in combined  
%                     response vector = HAB (assumi ng cell history  
%                     space uniformly distributed).  
% 
%Author:  Denise Wolf dmwolf@lbl.gov  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function   [HA,HB,HAB,IAB]=Entropy_MutualInfo(ClustA,ClustB)  
  
  
no_clustersA=max(ClustA);  
no_clustersB=max(ClustB);  
  
  
%H=-sum(log2(pi)pi)  = informational entropy  
  
HA=0;  
  
for  i=1:no_clustersA    
  size_clustiA(i)=length(find(ClustA==i));  
  piA(i)= size_clustiA(i)/length(ClustA);  
  HA=HA-log2(piA(i))*piA(i);  
end  
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HB=0;  
  
for  i=1:no_clustersB    
  size_clustiB(i)=length(find(ClustB==i));  
  piB(i)= size_clustiB(i)/length(ClustB);  
  HB=HB-log2(piB(i))*piB(i);  
end  
  
  
%%%I(X,Y)=H(X)+H(Y)-H(X,Y)= mutual information of X ,Y  
%%H(X,Y)=sum_x(sum_y(pij*log2(pij))= entropy of vec tor (X,Y)  
  
PAB=zeros(no_clustersA,no_clustersB); %PAB is the probability distribution of A,B  
HAB=0;  
for  j=1:no_clustersB  
    for  i=1:no_clustersA  
        
PAB(i,j)=length(intersect(find((ClustA==i)),find((C lustB==j))))/length(ClustA);  
        if  PAB(i,j)>0  
           HAB=HAB-PAB(i,j)*log2(PAB(i,j));  
        end  
    end  
end  
  
  
IAB=HA+HB-HAB;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
S3.2)  Matlab scripts for visualizing and clustering data (Step 1). 
 
%Input:   Data = m x n time series matrix, where m = the number of  
%         trajectories and n= the number of time po ints. 
%         History_Labels = m x 1 text vector with c ell history labels. 
% 
% Directions: Run this script twice, first with the  ward linkage and  
%    second with the average linkage, and select th e partition  
%    (Tx; x ∈[1,7]) that maximizes the mean silhouette.  We run this script  
%     twice because the two linkage functions can p roduce  
%     different trees, and thus different partition s. The ‘best’ partition of  
%     the 14 calculated, according the silhouette c riterion  
%    (maximum mean silhouette over all clusters, fo r seven cutoffs each from %     
the trees constructed using average and ward linkag es) is then selected  
%     as the ‘optimal’ clustering output of the pro cedure.   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%Calculate distance matrix 
Data_dist=pdist(Data,'euclidean'); 
 
%Calculate linkage function 
Zfunction_ward=linkage(Data_dist,'ward');   
Zfunction_avg=linkage(Data_dist, 'average'); 
Zfunction=Zfunction_ward;  %or avg  
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%Visualize clustering over all cell histories  
figure;[H,T,perm] = dendrogram(Zfunction,0, 'colorthreshold' , 'default' , 
'orientation' , 'left' , 'labels' ,History_Labels, 'colorthreshold' ,4.5);  
  
figure   %Calculate cluster vectors T for the first 7 levels  of tree-cut  
[H,T2,perm] = dendrogram(Zfunction,2, 'colorthreshold' , 'default' , 
'orientation' , 'left' , 'labels' ,History_Labels);  
[H,T3,perm] = dendrogram(Zfunction,3, 'colorthreshold' , 'default' , 
'orientation' , 'left' , 'labels' , History_Labels);  
[H,T4,perm] = dendrogram(Zfunction,4, 'colorthreshold' , 'default' , 
'orientation' , 'left' , 'labels' , History_Labels);  
[H,T5,perm] = dendrogram(Zfunction,5, 'colorthreshold' , 'default' , 
'orientation' , 'left' , 'labels' , History_Labels);  
[H,T6,perm] = dendrogram(Zfunction,6, 'colorthreshold' , 'default' , 
'orientation' , 'left' , 'labels' , History_Labels);  
[H,T7,perm] = dendrogram(Zfunction,7, 'colorthreshold' , 'default' , 
'orientation' , 'left' , 'labels' , History_Labels);  
  
figure;  
subplot(3,3,1)  %3x3 plot, first figure= visualize 2-d projection  
[Y,eigvals] = cmdscale(Dfunction);  
plot(Y(:,1),Y(:,2), '.' , 'MarkerSize' ,15);  
text(Y(:,1),Y(:,2),History_Labels,'FontSize',7);  
xlabel( 'MDS scaled distance' )  
ylabel( 'MDS scaled distance' )  
 
subplot(3,3,2)   %Second figure = silhouettes for 2-level tree cut  
[s2,h2]= silhouette(Data,T2, 'euclid' );  
 
subplot(3,3,3)   %Third figure = silhouettes for 3-level tree cut  
[s3,h3]=silhouette(Data,T3, 'euclid' );  
  
subplot(3,3,4)    %Fourth figure = silhouettes for 4-level tree cut   
[s4,h4]=silhouette(Data,T4, 'euclid' );  
  
subplot(3,3,5)    %Fifth figure = silhouettes for 5-level tree cut  
[s5,h5]=silhouette(Data,T5, 'euclid' );  
  
subplot(3,3,6)    %Sixth figure = silhouettes for 6-level tree cut   
[s6,h6]=silhouette(Data,T6, 'euclid' );  
  
subplot(3,3,7)    %Seventh figure = silhouettes for 7-level tree cut  
 [s7,h7]=silhouette(Data,T7, 'euclid' );  
  
subplot(3,3,8)    %Eighth figure = mean silhouette for each partition  
bar([2:1:7],[mean(s2) mean(s3) mean(s4) mean(s5) me an(s6) mean(s7)])  
xlabel( 'Number of clusters in partition' )  
ylabel( 'Mean Silhouette' )  
 
end   
 
 
Caveat: Silhouette is a popular cluster validation/ selection measure that scores a 
partition based on both the compactness of its clus ters and their separation  [1].  
People like it because it is systematic, and becaus e it takes into account local 
and global properties of a partition.   However, li ke all clustering 
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validation/selection measures, Silhouette has its b iases.  It is a conservative 
criterion in that there is a tendency for the metho d to swamp out detail and 
under-report the number of clusters if there are mu ltiple widely-spaced scales of 
cluster separation. 

 
For the data set analyzed in this paper, this is mo st evident in the clustering of 
the transient data set for growth (OD 600).  By eye it appears that there might be 
some structure in the data set at early time points  (OD 600 of cells  with a history 
of growth in GM, but to different densities, figs. 4 and 5c) that gets subsumed 
into two large clusters because of the large separa tion between the set faster 
growing trajectories with a history of growth in GM  and the much slower growing 
set of trajectories with a history of growth in LB.   Despite this conservatism, we 
used Silhouette because of all the methods we consi dered, it seemed to do the best 
job selecting tree cuts (mostly because the majorit y of our data is structured on 
a single level of resolution).  However, given the difficulty in selecting a good 
clustering validation technique, we suggest that th e reader take the structure of 
their data sets into account when selecting a clust ering criterion so as to get 
the best ‘match’ between the bias of the method and  the data to be analyzed.   

 
S3.3)  Matlab script for combinatorially combining cluster vectors (Step 2-3). 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Input:   Clust1  - the cluster vector from one obs ervable (integers) 
%         Clust2  - the cluster vector from another  observable (integers) 
% 
%Output:  Clust3 – the cluster vector obtained by c ombinatorially combining  
%           the cluster vectors ClustA and ClustB. 
% 
%Example:  Say Clust1 = [ 1 1 2 2 2] and Clust2 = [  1 1 1 2 2]. Then Clust3  
%          =[1 1 2 3 3] to show that there are thre e possible combinations:  
%      (Clust1,Clust2)=(1,1); (Clust1,Clust2)=(2,1)  and (Clust1,Clust2)=(2,2) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
  D=[Clust1 Clust2]; 

    Clust3=clusterdata(D,0.1);    %clusterdata.m is a function in the 
Statistics              

                                                   %                               Toolbox of 
Matlab.       
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Supplementary Information S4 
 
For “Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium”, by  Denise M. 
Wolf, Lisa Fontaine-Bodin, Ilka Bischofs, Gavin Price, Jay Keasling, and Adam P Arkin.  PLoS ONE 
2008 
 
S4.  Alternative strategies in time-series interval sampling for memory 
calculations: 
  

 
 
Figure S4.  Three possible approaches to interval sampling for memory calculations: a) sliding window (A1), b) 
sliding interval end-point (A2), and c) fixed interval (A3). 
 
Memory calculations for adaptive memory experiments involve calculating the mutual information 
between cell history before time t0 and cell behavior after time t0.  If cellular behavior is measured at a 
single time point, say at 24 hours after t0, it would be clear how to proceed, at least in terms of 
temporal sampling of the response:  one would calculate the mutual information between the cellular 
response measurements at that single time point and the cell histories corresponding to each 
measurement.  However, because in our experiments behavior after time t0 is measured as a time series 
– every 15 minutes for 24 hours – a choice must be made about which time points or intervals to 
analyze.   
 
On one end of the spectrum is a sliding window approach (which we will call A1).  If the window size 
is 1, admitting just a single time point, this approach amounts to calculating the mutual information 
between cell history and cell response at each sampled time point after t0.  Or one could select a 
window size greater than 1, and ‘slide’ the window along the time axis, producing a calculation for 
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mutual information between cell history and response from t’-twindow to t’, as t’ ranges from t0+twindow 
to the final measurement at t0+24 hours.  The sliding window approach produces a (sampled) 
continuous time-varying memory measurement function, as shown in Figure S4a above for a window 
size of 5 sample points (≈1.5 hours) applied to the sporulation initiation time series data.  (Though 
Swinney’s information analysis algorithm is in general appropriate for a sliding window approach, we 
used the clustering and silhouette analysis approach described in Supplementary Information Section 
S3 for this example because a much larger data set than ours would be required to use Swinney’s 
analysis algorithm at measurement intervals short enough to avoid excessive ‘blurring’ of the time 
series dynamics [1] [2]). 
 
On the other end of the spectrum is a fixed-interval approach (approach A3).  This approach involves 
extracting transient and asymptotic segments of the temporal cellular response.  The mutual 
information between the transient response and cell history is then used to estimate transient memory, 
whereas the mutual information between the asymptotic response and cell history is used to estimate 
asymptotic memory.  This approach is discrete, in that it maps a time series onto just two numbers – 
the transient and asymptotic bit counts, as shown in Figure S4c for the sporulation initiation time series 
data. 
 
Between these two ends of the spectrum is the sliding interval end-point approach (approach A2).  In 
this approach all analyzed measurement intervals start at time t0, but the end point is variable, or 
sliding, starting from t0 and ending at the final time point, t0+24hr.  Figure S4b shows the result of this 
approach applied to the sporulation initiation time series data. 
 
Each of the three approaches has its pros and cons.   Both the sliding window (A1) and the sliding 
interval end-point (A2) approaches are appealing in that the measures are continuous, and as the final 
time gets very large relative to time it takes to converge to asymptotic behavior, both measurements 
converge to the asymptotic value.  Another interesting aspect of these approaches is that they 
communicate the temporal increase and decrease of information and mutual information from the 
perspective of the observer. The increase captures, among other (conflated) dynamics, the rate at which 
the history-dependent states of the cells become observable in the read-out, whereas the decrease 
captures (also among other conflated dynamics) the decay rate of memory as it relaxes from the 
maximum amount of transient memory to the lesser long-term memory. This notion of memory decay 
time could also be mapped onto a single measurement like a half-life - the time after t0 after which the 
amount of memory remains at less than half of the difference between the maximum transient memory 
and the long term memory. One potential down-side, however, especially for the sliding window 
method, is the emphasis on the moment experience of an outside observer of  as  increases and 
decreases in information and memory due to ‘curve crossing’ resulting from unobservable states are 
traced (see Figure S4a).  This emphasis is a departure from our goal of quantifying alternative pathway 
control conditioned by cell history.  A naive interpretation of memory curves derived from these 
approaches could also be misleading.  For instance, looking at Figure S4a,b, one might conclude that 
the cells mostly do not ‘remember’ their history for the first few hours, and then start to remember 
their history when the curves diverge.  However, since cell history prior to t0 is most likely to impact 
cell behavior after t0 largely through an initial condition of the cell as a whole at time t0, a more likely 
interpretation is that though the cells encode memory of their past experiences maximally at time t0, 
the manifestation of this memory in the observable does not become apparent for several hours.  
 
Consequently, given our interest in capturing substantial qualitative differences in transient and long-
term patterns of behavior of the pathways as conditioned on prior history, we chose the discrete, fixed-
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interval approach (A3).  Though this approach is not as visually interesting as the continuous 
information and memory curves derived from A1 and A2, we believe it is more consistent with our 
goals of calling out history-dependent behavior patterns and is appealing in its relative simplicity.     
 
One issue with the fixed-interval method we chose is that one must choose time intervals to analyze.  
This may be done ad hoc, according to the interests of the analyst, or more systematically. One way to 
approach interval selection systematically is to perform a sliding interval end-point analysis, as shown 
in (b) above for the sporulation time series, to determine the information dynamics of the curves as a 
function of interval.  If the goal is to pick a transient interval that maximizes information & memory, 
the end point can be selected by choosing a time point at the maximum on the curve.  For our data, 
intervals that start at t0 and end anywhere from 8 to 19 hours after t0 are roughly equivalent, 
informationally speaking.  We selected 11 hours after t0 to be the end point of the transient data 
interval, but would have obtained the same results had we chosen nearly any point between 8 and 19 
hours after t0. 
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S5.  Complete set of memory and mutual information calculations 
 
 

 
 
 
 
Table S5:  Estimated lower bounds on cell-history memory (red, lower left triangle) and mutual 
information (blue, upper right triangle) in informational entropy bits for each individual B. subtilis 
stress response read-out and each vector pair of read-outs, with respect to the cell histories tested by 
our compendium.  Read-outs include both transient and ‘asymptotic’ sporulation initiation (PspoIIE-
gfp expression), AprE synthesis (PaprE-dsred expression), and growth (OD600) signals. For example, 
the mutual information between transient sporulation and AprE signals can be found in the 4th row and 
5th column of the matrix (1.4855 bits) whereas the memory encoded in the combined transient 
sporulation and AprE signals can be found in the 5th row and 4th column of the matrix (1.961 bits).  
Notice that the upper right 3x3 off-diagonal block contains estimates of the mutual information 
between all combinations of transient and long-term signals, which provides an estimate for how much 
transient memory carries over into the long term response.  See Materials and Methods for details on 
the calculations. 
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S6.  The distribution over the population of GFP and DsRedExpress expression 
levels for selected cell histories and time points. 
 
The histograms below derive from a flow cytometric analysis of the B. subtilis reporter strain KEE at 
selected time points and for selected cell histories. 
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Figure S6.  Histograms from flow cytometry analysis of B. subtilis cells with a history of growth in rich LB 
medium to a density of -2 (OD500=1.016) prior to resuspension in starvation (SM) medium at time t0 at an initial 
density of OD600=0.5.    a) PspoIIE-gfp expression (GFP intensity) at 6 hours after t0; b)  PspoIIE-gfp expression 
(GFP intensity) at 24hrs after t0; c) normalized heatmap of PspoIIE-gfp expression histograms (GFP intensity) 
sampled at selected time points from t0 to 24 hours after t0; d) PaprE-dsred expression (RFP intensity) at 6 
hours after t0; e) PaprE-dsred expression (RFP intensity) at 24hrs after t0; f) normalized heatmap of PaprE-
dsred expression (RFP intensity) sampled at selected time points from t0 to 24 hours after t0.  In the heatmaps 
shown in (c,f), the distance along the y-axis is fluorescent intensity channel number (logarithmic scale), and the 
color along the y-axis corresponds to the (relative) number of cells (red corresponds to the maximum, yellow to 
an intermediate number of cells and dark blue to no cells).   
 
Flow cytometry protocol: 
 
Cells sampled at 10h and 20h after resuspension in SM medium were washed twice in one volume of 
0.2 µM filtered PBS (phosphate-buffered saline, pH 7.4), 100x diluted in the same buffer and directly 
measured on a Partec CyFlow space flow cytometer (Partec GmbH, Münster Germany) operating an 
argon laser (488 nm). For each sample, at least 50,000 cells were analyzed. Data containing the green 
fluorescent signals were collected by a 520 nm BP filter and the red fluorescent signals were collected 
by a 590 nm BP filter. Data was captured using Flomax 2.4f software (May 23 2006) and further 
analyzed using the commercial software package FCSExpress (http://www.denovosoftware.com). 
Background fluorescence was analyzed with parental strain B. subtilis 168 with each flow cytometric 
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experiment to discriminate background from GFP and DsRed specific fluorescence.  The heatmaps 
were constructed using the Matlab© functions surface.m, axis.m, and set.m. 
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S7.  Sporulation initiation delay as a function of cell history 
 
The plot below shows sporulation initiation delay as a function of cell history as manifested in GFP 
expression delay in our B. subtilis reporter strain KEE.  
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Figure S7. Sporulation initiation delay as a function of cell history.  Cells were subjected to one of 10 cell 
histories prior to time t0 and then to a common stress condition, resuspension in SM, a sporulation ‘starvation’ 
medium, after t0 (see Table 1 for key to cell history labels). In theory at least, sporulation initiation delay is a 
likely feature of the sporulation regulation strategy of B. subtilis to exhibit memory, because of its potential to 
have a large impact on fitness.  By calculating the mutual information between sporulation initiation delay times 
and total transient sporulation dynamics, we find that 85.95% of the transient memory exhibited by the 
sporulation initiation pathway is explained by cell-history modulation of sporulation initiation delay. 
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S8.  Bacillus strains and plasmids table 
 
The experiments in this paper made use of the following bacterial strains and plasmids: 
 
Strains and plasmids 

Genotype 
Reference 

Bacillus 
subtilis 

  

168 trpC2 [1] 
LF25 168, amyE::PspoIIE-gfp, cmp This study 
KEE 168, amyE::PspoIIE-gfp, PaprE-dsred, cmp This study 

Plasmids 
  

pMF19 PspoIIG–gfp, spc [2] 
pEA18 Pxyl-gfp, cmp spc [3] 
pLF22 PspoIIG–gfp, cmp spc This study 
pLF25 PspoIIE-gfp, cmp spc This study 
pSG-TTGACA PaprE’-lacZ, cmp [4] 
pDsRed-Express Plac-DsRed-Express, amp Clontech 
pLFKEE PspoIIE-gfp, PaprE-dsred, cmp spc This study 
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S9.  PspoIIE-gfp fusion activity compared to the spoIIE gene expression profile 
 
The data below shows that our GFP reporter for sporulation initiation in B. subtilis faithfully tracks 
expression of the stage II sporulation gene spoIIE. 

 
 
Figure S9.  A. GFP activity in strain LF25 (amyE::PspoIIE-gfp cmp) and spoIIE transcriptional profile. Wild type 
and LF25 strains were grown in parallel in GM medium to an OD600 of 0.6 and 0.7 respectively. Cells were 
resuspended in SM medium to induce sporulation (as described in Materials and Methods) and two 200 µl 
aliquots were transferred into a microplate for time course measurement in a Safire spectrofluorimeter (TECAN 
inc.) with shaking, at 37ºC. Fluorescence (481 nm absorption and 507 nm emission) and OD600 were measured 
every 15 minutes. A. LF25 strain time points are shown with squares, whereas wild type Bacillus subtilis strain 
time points are shown with circles. Relative fluorescence (RFU) was normalized by the OD600. 
B. The transcriptional profile of the spoIIE gene was verified by total RNA dot-blot. Total RNA was extracted 
from B. subtilis cultures after induction of sporulation as previously described for C. acetobutylicum, [1]. RNA 
quality and quantity were checked by capillary electrophoresis using a 2100 Bioanalyzer (Agilent Technologies, 
Palo Alto, California). Total RNA samples (8µg each) taken just after resuspension (T0) and at 30 minutes 
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intervals (T0.5, T1, T1.5, T2, T2.5) were spotted on positively charged Nylon membranes (Roche) using a dot 
blot manifold (Perkin Elmer). Denaturation, fixation on membrane and hybridization were performed as 
previously described for Northern blots [Fontaine, 2001 #15]. A radioactively labeled probe was PCR amplified 
within the spoIIE gene using primers  spoIIE-D  (cgtcggtaccATGGAAAAAGCAGAAAGAAGAG) and spoIIE-R 
(cctcggatccaccTGAAATTTCTTGTTTGTTTTGAA) on B. subtilis 168 genomic DNA as template. The resulting 
689-bp fragment was radiolabeled as previously described [8]. 
The data shown in (B) confirmed spoIIE early and specific expression induction at the onset of sporulation, 
starting clearly from T1.  The GFP activity of the PspoIIE-gfp fusion (squares) in (A) showed a clear increase 
starting from T1.5 after the resuspension event. 
 
 
 
  
 
References 
 
1. Fontaine L, Even S, Soucaille P, Lindley ND, Cocaign-Bousquet M (2001) Transcript quantification 
based on chemical labeling of RNA associated with fluorescent detection. Anal Biochem 298: 246-252  
 


	Memory in Microbes: Quantifying History-Dependent€Behavior in a Bacterium
	Abstract
	Results
	Information Theoretic Memory Framework
	'Adaptive' memory experiment
	Adapting communication metrics to memory
	Short term vs. long term memory
	Memory quantification normalized
	Quantifying memory in higher dimensions
	Implementation
	Caveats
	Experiment and Overview of Analysis
	Experimental Results
	All observables exhibit short-term memory of cell history, with sporulation exhibiting the most and growth dynamics the least
	All observables exhibit long-term memory of cell history, though at a lower bit count than short-term memory
	Different observables remember different aspects of cell history to different degrees
	There is more long-term memory in the combined activity of the observables than is present in any individual observable


	Discussion
	
	Ideas for a more complete memory-in-microbes research program
	What do the B. subtilis memory observations in this case study mean?


	Materials and Methods
	Acknowledgement:
	Bibliography
	Figure Captions
	Table
	References
	Clust3=clusterdata(D,0.1);    %clusterdata.m is a function in the Statistics
	S8.  Bacillus strains and plasmids table
	Genotype

	Bacillus subtilis
	
	Plasmids

